
Text Direction
Deception

U N D E R S TA N D I N G P H I S H I N G

In this installment of Understanding Phishing we’ll dissect this email to

understand how it works. We’ll also take a look at the countermeasures

we’ve deployed to catch scams that use these CSS tricks.

Every so often we at INKY come across a scam email that genuinely impresses

us with its injurious ingenuity. One such message arrived in one of our

customers’ inboxes in July 2019.

What’s so interesting about this malignant mail is that it uses capabilities of

Cascading Style Sheets (CSS) that most people don’t even know exist to sneak

through incumbent mail protection systems like Proofpoint.

In this installment of Understanding Phishing we’ll dissect this email to

understand how it works. We’ll also take a look at the countermeasures we’ve

deployed to catch scams that use these CSS tricks.

Our primary finding is that CSS offers tools for mixing scripts like Arabic and

Latin, which naturally flow in different directions on the page. Attackers can

abuse this feature to make backwards text render forwards in an email, thereby

hiding the text from the Secure Email Gateway (SEG) while preserving the normal

appearance to the human recipient.

Here’s what that July 2019 mail looks like (edited only to redact PII):

Scamming with Sneaky CSS

At first this looks like a typical fake voicemail notification. We see many variants

of these, usually (but not always) impersonating Microsoft. As is fairly common,

the Office 365 logo in the upper left corner is actually just red text set in large

type — the attributes color=#ff0000 size=7 effect this “logotype” style:

inky.com

But wait! Where’s the text saying Office 365? If you look closely, it says “563

eciffO” instead of “Office 365”. And notice the style attribute on the span element:

unicode-bidi: bidi-override; DIRECTION: rtl. Mozilla describes these

obscure CSS properties as follows:

The unicode-bidi CSS property, together with the direction property, determines how

bidirectional text in a document is handled. For example, if a block of content contains

both left-to-right and right-to-left text, the user-agent uses a complex Unicode

algorithm to decide how to display the text. The unicode-bidi property overrides this

algorithm and allows the developer to control the text embedding.

To make sense of this, we need to first recognize that an HTML document might

contain multilingual text, where some text is in a left-to-right script like Latin and

some is in a right-to-left script like Arabic. Here’s an example from the W3C site:

In most cases the HTML rendering engine is smart enough to automatically figure

out how to display mixed script sequences like this properly. But in tricky cases

the web designer may need to provide explicit hints to tell the renderer exactly

which directionality to use for which text span. The scammers are using this hinting

mechanism to force the backwards text “563 eciffO” to render right-to-left — this is

the meaning of the rtl value of the direction property — and appear to the end

user as “Office 365”. But why?

The answer is: to trick the Secure Email Gateway (SEG). The attacker knows SEGs

use Bayesian statistical models that learn which text sequences distinguish good/

legitimate mail from bad/spammy/scammy mail. These models — the workhorse of

mail protection since the 90s — learn, for example, that dollar signs in the subject

line and “make money fast!” in the body correlate with spam.

These models also learn to detect scam-indicative patterns like “Office 365 ...

voicemail”. While the presence of a pattern like this obviously doesn’t guarantee a

mail is bad, it may trigger the SEG to do deeper analysis of the mail.

The CSS “direction trick” allows the attacker to thwart the SEG’s pattern matcher,

because the indicative text never actually appears in the HTML code of the email. But

this concealment remains invisible to the end user, who sees the text as perfectly

normal. Thus the attacker succeeds in fooling both the SEG and the end user...

simultaneously!

Interestingly, this email also exploits another HTML trick we cover in an earlier

installment of the Understanding Phishing series. Look carefully at this text:

Notice how the 6 in 365 and the m in Voicemail look funny? That’s because those

glyphs are actually Unicode CYRILLIC SMALL LETTER BE and Unicode CYRILLIC

SMALL LETTER EM respectively. This entire text appears reversed in the HTML,

too:

inky.com

A double deception! And as if all this weren’t enough to confuse the SEG, this email

hides its phishing link — the bait the attacker hopes the victim will take — inside a

text file attachment:

The rectangular block of gibberish is base64-encoded data that decodes as this:

In one final flourish, the scammer has also set the Content-Type of this

attachment to application/octet-stream. This media type is only meant for

an opaque byte stream — data in an unknown format – but the attacker knows mail

readers like Outlook and Gmail will automatically auto-detect the true file type and

display the attachment properly as a plain text file — even though attachments of

this “unknown” type are likely ignored by the SEG!

inky.com

How INKY Solves it
There’s so much going on in this email that one really has to marvel at the sender’s

mastery of malign mail. To fight back, INKY must be clever too.

To identify emails like this, INKY first renders the HTML content of each email. In

essence, INKY pretends to be a mail reader like Outlook that’s about to display the

mail to the recipient end user. This all happens in the cloud, so there’s no physical

display to render to and no actual user — but the process mimics what will happen

when Outlook displays the mail.

This virtual rendering step gives INKY two parallel views of each email: the raw

HTML elements, attributes, and properties view, and the visual what the user will

actually see view. By comparing and contrasting these two views, INKY can readily

spot directional deceptions like this. Here INKY sees “Office 365” both in its

reversed form (in the raw HTML) and in its normal form (in the rendered output).

So INKY can see brand-indicative text here where other systems can’t. In this case

INKY ses that this mail appears to be from Microsoft, but is sent from telus.net

which is not a legitimate sending mail server for Microsoft. It is therefore a brand

impersonation which should be quarantined.

INKY also simulates the mail readers’ behavior with attachments. Like Outlook,

INKY automatically determines file types regardless of the opaque Content-

Type, and is able to extract the URL from the attachment to this email. If a URL in

an attachment has been reported as phishing, INKY can quarantine the message on

that basis alone. In general, INKY is able to extract URLs from virtually any kind of

attachment.

Phishing scams continue to evolve, and attackers apply an ever
growing bag of tricks to fool both human recipients and mail protection
software. Sophisticated bad actors bring extensive knowledge of how
SEGs and mail readers work to craft scams that fool both the humans
and the machines.

INKY renders HTML email just like a real mail client does, and then
uses computer vision techniques to “see” the result much like a person
would. This allows INKY to see through these kinds of scams and
prevent more phishing emails from reaching users’ inboxes.

Conclusion

inky.com

We’re passionate about email.
Want to talk about an issue you’re facing in email security at your organization?

Request a demo today.
www.inky.com

